Mender

Automated configuration discovery

Mender By
OPSDIS

Mender overview

IT infrastructure has become more dynamic. With the increasing use of cloud
services, container orchestration, dynamic scaling of services etc, the landscape of
our IT environment is changing at an accelerating pace. Many new architectures
support this type of infrastructure by using different kinds of discovery patterns.
For infrastructure and application entities, discovering changes can be used to
provide different services like scaling, deployments, change load balancers, health
checking etc.

For service discovery to work, however there is a need for sources of information.
Changes in the source system trigger events that the discovery service turns into
action(s).

When it comes to monitoring, systems discovery must be the correct way to
configure what to monitor. In modern systems like Prometheus, service discovery is
an integrated component. E.qg. if the discovery detects that a new host has been
added to a DNS server it will automatically start to scrape metrics from the new
host without any need for reconfiguration or restarting the monitoring service. So in
Prometheus it is separated into configuration (i.e. what to do), and discovery (what
to do it for).

For traditional monitoring systems this is typically not the case. Typical
configuration is a manual process, which causes a number of negative effects:

« Long latency before new or changed hosts and services are added to the
monitoring system. Often there are different organisations that are handling the
setup and deployment of applications/services/infrastructure and the
monitoring system itself.

« The same latency or lack of feedback is also seen when hosts or services are
removed or decommissioned, which can lead to false alarms.

« In a manual process it's often the case that different people will do the
monitoring configuration in different ways, leading to a wide spectrum of
standards and policies, even if they are documented.

« Manual processes consume a lot of time while keeping up with changes in the
environment, which leads to a high labor cost of professional engineers.

The overall result is that we have a monitoring system with low data quality that
does not reflect the real IT environment, which in the worst case could lead to
critical incidents are not detected or not possible to resolve quickly.

Mender is our solution to this problem. It is targeted to enable automated
configuration discovery for the ITRS OP5 Monitor monitoring system. OP5 Monitor
has its roots in the classical Nagios data model, but has evolved to a powerful
monitoring system including powerful GUI, high-availability, API's for configuration
and operational data. But configuration automation has been left up to the user to
implement. Since OP5 Monitor typically targeted large organisations with
substantial IT arsenals, configuration automation is a key aspect to provide
effective and up-to-date monitoring.

So what does automated configuration
discovery mean in the context of OP5
Monitor?

The idea is to connect different source
systems that contain information that
can be used to create configuration of
hosts and services in Monitor. There
can be multiple and different kinds of
source systems, network management
system e.g. Cisco Prime, a traditional

cmdb system like ServiceNow, a configuration system like Puppet, or IPAM system
like Infoblox etc. It is important that these systems contain the "truth" of the IT
environment that is deployed related to servers, switches, routes, load balancers,
databases, messages buses, applications etc.

This is what Mender does, integrating all these systems with Monitor by managing
any life cycle changes in the source system and comparing it with the configuration
in Monitor for the equivalent objects. If different from the source, Mender will
update Monitor with only what has changed using the public Monitor API's. The
comparison processing can be run on schedule, like every hour, or on demand
depending if a state change can be detected in the source system.

Mender is a Python module and can run on every server platform that supports
version 3 of Python. The integration with the source system is done with what is
called providers, which are Python modules. Which provider modules to run is
defined in a Mender configuration file. This enables full customization of how data
is extracted from the source system, while Mender will just manage all the logic
and processing in regards to interacting with Monitor.

Architecture overview

With Mender, our customers will always have a monitoring system up to date with
the environment it is responsible to monitor. Manual configuration will be minimal
as a complete automated process for configuration is implemented.

Mender architecture

The core of the Mender architecture is a generic object model of Hosts, Services
and Hostgroups. This model is populated in two steps, by first extracting the
information from Monitor and then extracting the information from the source
system by a provider. When the two model stacks are populated, Mender conducts
a comparison between them to calculate the difference between the two. This
difference can resolve in that an object needs to be created, updated or deleted.
Only the objects that are different are managed using Monitor’s configuration API.
This keeps the number of API calls to a minimum. When all the configuration calls
have been executed, Mender calls the Monitor exports API to deploy the
configuration and restart Monitor. This is the same process as if the changes had
been done from the Monitor Web GUI manually.

Since a Mender setup can have multiple providers, some customers have up to
+10 different source systems, Mender needs to know for all the hosts in Monitor
from which provider they originated from.

This is done by using a hostgroup that is unique for each provider that all hosts
configured from the provider will belong to. This is called a provider "marker"
hostgroup and is used when selecting hosts and their services from Monitor for
comparison with a specific provider.

The processing flow done in 6 steps:

1.Read all host and service configuration for the provider marker hostgroup and
create the Mender object stack

2.Read the source system data related to hosts and service and create the
Mender object stack.

3.Compare the two stacks Create a result list of differences that need to be
executed against Monitor to get a consistent state.

4.Execute the API calls for the above list.

5.Save the new configuration and restart Monitor.

The processing of the above steps is done in two phases. In the first phase,
Mender resolves all the needed configuration actions according to the steps above
and creates a list of API calls that must be executed to achieve the new state of
the provider. In the second phase, each API call is done according to the list. The
reason for this two phase approach is that each step in each phase is
communicated to a callback class that can be customized. This callback can be
used to subscribe to the events occurring and actions can be taken, like updating
some third party system, creating a specific audit log or even aborting future
processing.

With Mender we can create Monitor configuration with thousands of hosts and
tens of thousands of services in a fully automated and repeatable way.

Operational features

Mender has a number of configuration options that can be set in its configuration
file. Some examples are:
« Do not process hosts and service currently in scheduled downtime
« Strict handling of hostgroups and contactgroups. E.g. if a host is only allowed
to belong to hostgroups defined by the provider or not.
» Services on a hostgroup will show up as a "normal" service on the host that
belongs to the hostgroup. These services should normally not be part of the
comparison process.

In Monitor, the processing of a host or service can also be controlled by using
custom variables. Currently Mender supports the custom variable _EXCLUDE. If
set to True the host or service will be excluded from any future processing until
unset. This should be used with care but if manual changes have to be done this
will ensure that the object is not overwritten during the next Mender execution.

Mender providers

Providers are the Python modules that must be developed to retrieve data from the
source system. A provider must follow a simple Python interface to be executed
from Mender. Here are some examples of providers that have been developed for
customers or by customers.

NETWORK MANAGEMENT SYSTEMS

e Cisco Prime e FortiManage e Aruba Airwave
e Cisco ACI e Fortigate ¢ Infoblox

¢ NetMRI e Fortiswitch Biglp (F5)

e Nedi

CONTENT MANAGEMENT CLASSIC CMDB

o GIT e Kace
¢ Confluence

INFRASTRUCTURE PROVISIONING AND DEPLOYMENT TOOLS

e Puppet « AMQ broker
MONITORING TOOLS ORCHESTRATION PLATFORMS

e OP5 Monitor e Rancher

¢ Prometheus ¢ Openshift

A number of customer specific inventory systems are
also a part of this list of providers.

A provider has the following responsibilities:
1.Read adequate data from the source system. This is typical over APl exposed
by the source system
2.Transform the data into Host, Hostgroup and Service objects.

After these steps, Mender will do all the heavy lifting to update Monitor to the
correct state.

Mender license

Mender is licensed under the GPL version 3 license. Subscribing customers have
access to new versions on Opsdis private pip repository and support.

Case studys

Our customers are using the Mender solution with a variety of configuration.
Read about some of them below

o VGRIT & Opsdis — An automation journey that increased quality and
efficiency

« Using monitoring to stay competitive in the 24/7 gambling_industry

o Combining Promethes and Nagios

Contact

Hampus Markkrona
Sales and Marketing

Hampus.markkrona@opsdis.com
+46 73-514 78 61

Johannes Dagemark
CEO and co-founder

Johannes@opsdis.com
+46 73-370 90 24

https://opsdis.com/vgr-it-opsdis-an-automation-journey-that-increased-quality-and-efficiency/
https://www.itrsgroup.com/case-study-Svenska-Spel
https://opsdis.com/combining-prometheus-and-nagios/
https://opsdis.com/combining-prometheus-and-nagios/

